

# C14530 (CuTe0.02Sn0.02)

18 08 US

Comparable standards: UNS C14530
Aurubis designations: C1453 • SM0300

#### **Description**

A patented copper alloy for electrical and heat transfer applications features a singular combination of properties to ensure reliable performance. C1453 can be cold rolled to hard tempers, yet retains good formability for intricate connector components. Electrical conductivity ranges from 94 to 98 % IACS, depending on temper, with corresponding high thermal conductivity. Stress relaxation performance and high softening temperatures make this alloy well suited for the most demanding connector applications. Other characteristics contribute to its utility value: corrosion resistance, ease of tinning and relatively high modulus of elasticity.

The excellent electrical and thermal conductivity cause less heat to be generated at the points of contact, and any heat that is produced transfers easily to the lead wires and out of the connector. This results in a significantly cooler running electrical/electronic interconnect assembly.

### Composition

| Cu*   | Sn               | Te or Se         | Р                |
|-------|------------------|------------------|------------------|
| [%]   | [%]              | [%]              | [%]              |
| 99.90 | 0.003 –<br>0.023 | 0.003 –<br>0.023 | 0.001 –<br>0.010 |

<sup>\*)</sup> Incl. Ag, Sn, Te and/or Se

# Physical properties

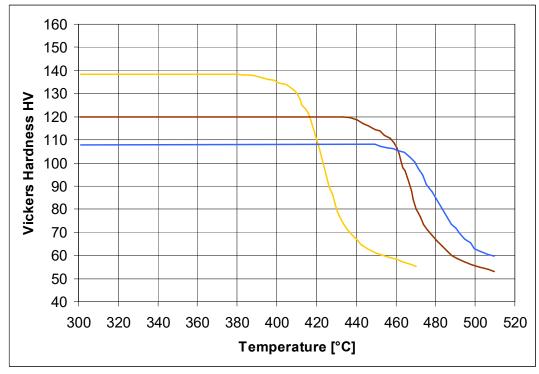
| Melting<br>point | Density      | Specific<br>heat cap. at<br>20°C | Electrical cond. | Thermal<br>cond. at<br>20°C | Mod. of elasticity | Coef. of<br>therm exp.<br>at 20°C |  |
|------------------|--------------|----------------------------------|------------------|-----------------------------|--------------------|-----------------------------------|--|
| [°F]             | [lb/in³]     | [Btu/lb°F]                       | [%IACS]          | [Btu/ft h °F]               | x1000 ksi          | [10 <sup>-6</sup> /°F]            |  |
| [°C]             | [g/cm³]      | [kJ/kgK]                         | [MS/m]           | [W/mK]                      | [GPa]              | [10 <sup>-6</sup> /K]             |  |
| <b>1976</b>      | <b>0.323</b> | <b>0.092</b>                     | <b>94</b>        | <b>212</b>                  | <b>17</b>          | 9.8                               |  |
| 1080             | 8.9          | 0.385                            | 55               | 368                         | 117                | 17.6                              |  |

The specified conductivity applies to the soft condition only

# Mechanical properties

| Temper | Tensile<br>strength<br>Rm | Yield<br>strength<br>Rp0.2<br>nominal | Elon-<br>gation 2"<br>nominal | Hard-ness<br>HV<br>nominal | min l<br>rat<br>90 |     |     | bend<br>tio<br>60° |
|--------|---------------------------|---------------------------------------|-------------------------------|----------------------------|--------------------|-----|-----|--------------------|
|        | [ksi]<br>[MPa]            | [ksi]<br>[MPa]                        | [%]                           | [-]                        | GW                 | BW  | GW  | BW                 |
| Soft   | <b>32-40</b><br>221-276   | <b>12</b><br>83                       | 15                            |                            | 0                  | 0   | 0   | 0                  |
| H02    | <b>41-49</b><br>283-338   | <b>42</b><br>290                      | 12                            | 105                        | 0                  | 0   | 1.0 | 1.0                |
| H04    | <b>47-54</b><br>324-373   | <b>50</b><br>345                      | 3                             | 115                        | 0                  | 0   | 1.5 | 2.0                |
| H06    | <b>50-60</b><br>345-414   | <b>54</b><br>373                      | 2                             | 118                        | 0.5                | 0.5 | 1.5 |                    |
| H08    | <b>54-64</b><br>373-441   | <b>58</b><br>400                      | 2                             | 120                        | 0.5                | 1.0 |     |                    |
| H10    | <b>57 min</b><br>393 min  | <b>57 min</b><br>393 min              | 2                             | 120                        |                    |     |     |                    |

Other tempers are available upon request.


GW bend axis transverse to rolling direction. BW bend axis parallel to rolling direction



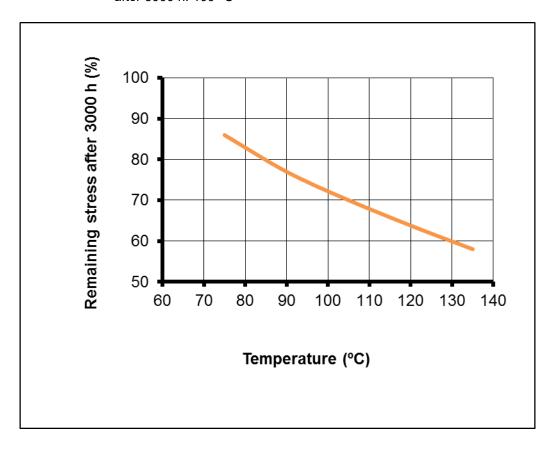
# Fabrication properties

| Soldering                | excellent |
|--------------------------|-----------|
| Gas shielded arc welding | excellent |
| Butt Welding             | good      |
| Cold formability         | excellent |

### **Heat resistance and Softening Characteristic**



Annealing time 2 min.


Temperatures at 1 min annealing time will be 10 degrees higher.

Temperatures at 4 min annealing time will be 10 degrees lower.



# Stress relaxation Resistance

Typical temperature for min 70 % remaining stress after 3000 h: 100 °C



Typical uses

Connectors and terminals for electrical and electronic applications, bus bars for junction boxes, lead frames, electrical contacts and radiator and heat exchanger fins

Applicable specifications

ASTM B152, B888